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S1.1 Computing moment equations

In this section we describe a systematic approach for computing transition functions under drift, recombi-
nation, mutation, and selection for a system of statistics that include E[Dm]. For any term E[f(D, p, q)], we
change variables to the space of haplotype frequencies. c1 is the frequency or count of type AB haplotype,
c2 for Ab, c3 for aB, and c4 for ab, so D = c1c4 − c2c3, p = c1 + c2, q = c1 + c3. We then compute transition
probabilities on the monomial expansion of this transformation in ‘c’-space, and then change variables back
to (p, q,D)-space and simplify.

For example, for E[D], we transform the expectation to

E[D] = E[c1c4 − c2c3] = E[c1c4]− E[c2c3].

Then for each of the expectations, we calculate its change over one generation due to drift, recombination,
mutation, or selection. For example, in the case of drift we find expectations after one generation by
considering copying probabilities (described in Section S1.1.1). Then

E[c1c4]t+1 =

(
1− 1

2N(t)

)
E[c1c4]t (S1)

and

E[c2c3]t+1 =

(
1− 1

2N(t)

)
E[c2c3]t. (S2)

We then convert back to (p, q,D)-space and simplify, obtaining

E[D]t+1 = E[c1c4]t+1 − E[c2c3]t+1 =

(
1− 1

2N(t)

)
E[D]t. (S3)

Throughout, we assume populations are in Hardy-Weinberg equilibrium and randomly mating. In addi-
tion, we assume that the recombination rate r, migration rates mij , and mutation rate u are small enough,
and population sizes Ni large enough, so that the product of r, mij , u, and 1

Ni
may be ignored. In other

words, we assume copying, recombination, mutation, and migration rates are small enough so that at most
a single event occurs within the n� N tracked lineages in a given generation.

S1.1.1 Drift

We compute how E[ck11 c
k2
2 c

k3
3 c

k4
4 ] is expected to change in a given generation under the action of drift. Let

k =
∑4
i=1 ki. We imagine tracking k lineages in the population, each of which is one of the four haplotypes.

The expectation is proportional to the probability that k1 of the lineages are in state c1, k2 are of type c2,
etc. We assume k � N(t) so that the probability of a drift event (where one lineage copies itself over another
within the k tracked lineages) is small, and we may assume that at most one such event occurs in any given
generation.

The probability of a copying event among k lineages in generation t is

P (copying event) =
1

2N(t)

(
k

2

)
. (S4)

Given that a drift event occurs, we can compute the probability of any possible transition. For example,

P ((k1, k2, k3, k4)→ (k1 + 1, k2 − 1, k3, k4)) = P (choose one of each c1 and c2) · P (c1 copies over c2)

=

(
k1
1

)(
k2
1

)(
k
2

) × 1

2

=
k1k2

k(k − 1)
. (S5)
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We combine all possible copying events and find E[ck11 c
k2
2 c

k3
3 c

k4
4 ]t+1 under drift

E
[
ck11 c

k2
2 c

k3
3 c

k4
4

]
t+1

= (1− P (copying event))E
[
ck11 c

k2
2 c

k3
3 c

k4
4

]
+ P (copying event)E

ck11 ck22 ck33 ck44 · ∑
1≤i,j≤4

(
kikj

k(k − 1)

ci
cj
δi 6=j +

ki(ki − 1)

k(k − 1)
δi=j

) .
(S6)

We wrote the D2 drift matrix in the main text. The system of statistics for D3 is

y =



E[D3]
E[D2z]
E[Dπ2]
E[πz]
E[Dσ1]
E[zσ1]
E[D]
E[z]


,

where σ1 = p(1− p) + q(1− q), and has transition matrix

D =
1

2N



−6 3 3 0 0 0 0 0
4 −11 16 1 −4 0 1 0
0 1 −11 0 1 0 0 0
0 0 36 −6 −6 0 1 0
0 0 0 0 −6 0 2 0
0 0 0 0 12 −3 −4 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 4 0


.

For the D4 system, with terms

y =



E[D4]
E[D3z]
E[D2π2]
E[Dπz]
E[π2

2 ]
E[D2σ1]
E[Dzσ1]
E[π2σ1]
E[σ2]
E[D2]
E[Dz]
E[π2]
E[σ1]



,
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the transition matrix is

D =
1

2N



−10 6 6 0 0 0 0 0 0 0 0 0 0
4 −18 48 3 0 −12 0 0 0 3 0 0 0
0 1 −21 1 1 2 0 0 0 0 0 0 0
0 0 36 −19 0 −6 1 0 0 1 0 0 0
0 0 0 4 −12 0 0 1 0 0 0 0 0
0 0 0 0 0 −12 1 1 0 4 0 0 0
0 0 0 0 0 12 −12 0 0 −4 2 0 0
0 0 0 0 0 0 2 −7 0 0 0 2 0
0 0 0 0 0 0 0 0 −6 0 0 0 1
0 0 0 0 0 0 0 0 0 −3 1 1 0
0 0 0 0 0 0 0 0 0 4 −5 0 0
0 0 0 0 0 0 0 0 0 0 1 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 −1



.

In general, the block upper triangular structure reflects the hierarchy of the moments system (Figure A1),
and the sparseness allows for rapid integration.

S1.1.2 Recombination

Recombination changes D in one generation at rate directly proportional to the recombination distance
between the two loci. This can be seen by considering the effect of recombination on the terms E[c1c4] and
E[c2c3]. Recombination occurs within one haplotype with probability r, assuming r is small. If recombination
occurs within the AB (c1) haplotype, our lineage changes state to Ab with probability 1

2 (1 − q) or to aB
with probability 1

2 (1 − p), and is otherwise unchanged. Similarly, recombination in the ab (c4) haplotype
gives rise to Ab with probability 1

2p or aB with probability 1
2q. Summing together these probabilities and

simplifying, the probability that recombination removes this haplotype pair’s contribution to D is r. Thus,
under recombination, the expected value of D decays as

E[D]t+1 = (1− r)E[D]t.

Assuming that r � 1, the expected decay of LD is, to leading order,

E[D]t+1 =

(
1− 1

2N
− r
)
E[D]t.

In general, haplotype frequencies are expected to change over one generations according to

c′1 = c1 − rD
c′2 = c2 + rD

c′3 = c3 + rD

c′4 = c4 − rD.

Then E[
∏
ckii ]t+1 = E[

∏
c′kii ]. Recombination does not change the expected allele frequencies at each locus,

so for any moments E[Dαf(p, q)], this simplifies to the recursion

E[Dαf(p, q)]t+1 = (1− αr)E[Dαf(p, q)]t. (S7)

S1.1.3 Mutation

In the infinite-sites model, mutations are assumed to occur once at any given locus (i.e., no recurrent or back
mutation). A two-locus pair that is observed to be polymorphic at both loci must have experienced a mutation
first at one locus, and then a second to occur at the paired locus. Thus, while E[H] = E[2p(1− p)] ∝ θ, the
joint heterozygosity E[p(1− p)q(1− q)] ∝ θ2.

In the Hill-Robertson system, a mutation can “create” one-locus diversity from an invariant sites, and
create two-locus diversity from one-locus diversity. Other terms in the Hill-Robertson system are unchanged
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by mutation. For higher order systems, we also have terms of the form E[π2σi] = E[p(1− p)q(1− q)(pi(1−
p)i + qi(1− q)i)] that change due to mutation:

∆UE[σ1] =
θ

2
,

∆UE[π2] =
θ

2
E[p(1− p) + q(1− q)],

∆UE[π2σi] =
θ

2
E[σi],

where ∆U is used to denote E[·]t+1 −E[·]t due to mutation. Here, we have assumed that the mutation rates
are equal at the left and right locus, although this approach allows for differing mutation rates between the
two loci, as in Ohta and Kimura (1969a).

Reversible mutations are also handled in a similarly straightforward manner. Under a reversible mutation
model, we find the same recursions due to mutation in the infinite sites model, with the additional decay of
each term f(p, q,D) in y as

∆UE[f(p, q,D)] = −k θ
2
E[f(p, q,D)],

where k is the sample-size order of the term (that is, the number of sampled haplotypes required to estimate
that term, as described in the Section S1.1.1) (Ohta and Kimura, 1969a).

S1.1.4 Selection in the Hill-Robertson system

While the Hill-Robertson system closes under drift and recombination, the D2 system (and all other orders)
does not close under selection. Here, we consider a simple selection model, with additive selection acting on
the A allele at the left locus (with selection strength s, |s| � 1), while the right locus remains neutral. Thus,
selection acts for or against AB and Ab haplotypes, with strength 1 + s relative to aB and ab haplotypes.
This selection model is relevant to computing the expect LD between a selected site and a neutral marker
separated by recombination distance r.

In this setting, we compute how selection is expected to change D2, D(1−2p)(1−2q), and p(1−p)q(1−q),
in expectation. Again we change variables to c-space and compute how selection is expected to change terms
in the monomial expansion. We denote c′i to be the expected frequency of type i after one generation. For
example,

c′1 =
c1(1 + s)

(c1 + c2)(1 + s) + c3 + c4

=
c1(1 + s)

1 + (c1 + c2)s

≈ c1(1 + s)(1− (c1 + c2)s) ≈ c1(1 + (1− p)s), (S8)

to first order in s. Similarly,

c′2 ≈ c2(1 + (1− p)s),
c′3 ≈ c3(1− ps),
c′4 ≈ c4(1− ps).

Then in one generation,

E
[
c′1
k1c′2

k2c′3
k3c′4

k4
]
≈ c1k1c2k2c3k3c4k4 (1 + k1(1− p)s+ k2(1− p)s− k3ps− k4ps)

≈ c1k1c2k2c3k3c4k4 (1 + (k1 + k2 − kp)s) ,

where k =
∑
i ki.

In one generation, the change in moments ∆SE[·] = E[·]t+1 − E[·]t due to selection is

∆SE[D2] = 2sE[D2(1− 2p)]
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∆SE[D(1− 2p)(1− 2q)] = −2sE[D2(1− 2p)] +
3

2
sE[D(1− 2p)2(1− 2q)]− s

2
E[D(1− 2p)]

∆SE[p(1− p)q(1− q)] = sE[p(1− p)q(1− q)] + sE[Dp(1− p)(1− 2q)],

Thus we need to include additional terms: E[D2(1− 2p)], E[D(1− 2p)2(1− 2q)], etc. These additional terms
require their own additional terms, so that this system grows and includes all terms (in expectation) D2pi(1− p)i(1− 2p)j

Dpi(1− p)i(1− 2p)j(1− 2q)
pi(1− p)i(1− 2p)jq(1− q)

 ,∀i, j ≥ 0.

To solve this system, we will require a moments closure approximation. This could be achieved, for
example, by approximating D2pi(1−p)i(1−2p)j as a linear combination of terms of lower order, {D2pi−k(1−
p)i−k(1−2p)j−l}, through a jackknife approximation (Jouganous et al., 2017). Alternatively, we could choose
some values i and j to truncate the system and approximate the necessary higher order terms as E[f(p, q,D)]
as E[g(p, q,D)]E[h(p, q,D)] where gh = f , which leads to a nonlinear system of ODEs. While beyond the
scope of this paper, work is ongoing to assess accuracy of closure approximations and incorporate models of
selection into multi-population LD models.

S1.2 Multiple populations

In this section, we describe the multi-population basis analogous to the Hill-Robertson system for a single
populations. We derive recursion equations for the multi-population basis under migration and admixture
events.

S1.2.1 Population splits

Consider a single populations (denoted 0) that splits into two populations (denoted 1 and 2). In the time of
the population split (t0), expected two-locus statistics in populations 1 and 2 are equal to those in population
0. This can be seen by considering the probability of sampling haplotypes in the two split populations. We
compute terms of the form

∏2
j=1

∏4
i=1 cj,i

kj,i , where cj,i denotes the probability of sampling haplotype i in
population j. We observe that at the time of the split, cj,i = c0,i, since expected haplotype frequencies in
the split populations are equal to expected haplotype frequencies in the parental population. Then,

2∏
j=1

4∏
i=1

cj,i
kj,i =

2∏
j=1

4∏
i=1

c0,i
kj,i =

4∏
i=1

c0,i
k1,i+k2,i . (S9)

Thus
E[D2

1]t0 = E[D2
2]t0 = E[D2

0]t0 ,

E[D1(1− 2p1)(1− 2q1)]t0 = E[D2(1− 2p2)(1− 2q2)]t0 = E[D0(1− 2p0)(1− 2q0)]t0 ,

and so on. Additionally, we consider E[D1D2], the covariance of D across populations 1 and 2, which initially
is

E[D1D2]t0 = E[(c1,1c1,4 − c1,2c1,3)(c2,1c2,4 − c2,2c2,3)]t0

= E[c1,1c1,4c2,1c2,4]t0 − E[c1,1c1,4c2,2c2,3]t0 − E[c1,2c1,3c2,1c2,4]t0 + E[c1,2c1,3c2,2c2,3]t0

= E[c20,1c
2
0,4]t0 − 2E[c0,1c0,2c0,3c0,4]t0 + E[c20,2c

2
0,3]t0

= E[D2
0]t0 .

In the absence of migration, the D2-systems in each of the populations evolves according to the Hill-
Robertson equations, while

E[D1D2]t+1 =

(
1− 1

2N1
− 1

2N2
− 2r

)
E[D1D2]t. (S10)
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S1.2.2 Migration

With the inclusion of migration, additional moments are needed to obtain a closed system. We write the
full basis with migration as

y =


E[DiDj ]
E[Dizj,k]

E[π2(i, j; k, l)]
E[Hi,j ]

 ,

where i, j, k, l index populations, and

Dizj,k = Di(1− 2pj)(1− 2qk),

π2(i, j; k, l) =
1

4
pi(1− pj)qk(1− ql) +

1

4
pi(1− pj)ql(1− qk)

+
1

4
pj(1− pi)qk(1− ql) +

1

4
pj(1− pi)ql(1− qk),

Hi,j =
1

2
pi(1− pj) +

1

2
pj(1− pi),

Initial values for each cross term are found using Equation S9 in Section S1.2.1.

The number of terms in the system grows in the number P of populations, as P 3 +
(
P (P+1)

2

)2
+3P (P+1)

2 .

While the size of the full joint AFS grows exponentially in P , the multi-population Hill-Robertson system
remains manageable for even large P : for example, the 10-population system has 4,190 terms, which is not
at all computationally burdensome for a sparse, linear system. When the left and right loci have equal
mutation rate, as we assume in most of our models, redundant terms exist in this basis so the system may
be further reduced in size.

We want to know how migration changes expected statistics in our system. We again work in c-space,
where ci1 represents the haplotype AB in population i, ci2 represents Ab in population i, ci3 represents aB
in i, and ci4 represents ab in i. We consider terms of the general form

E

[
P∏
i=1

4∏
l=1

ckilil

]
,

and set k =
∑
i,l kil as the total number of tracked lineages in our subsample across all populations, corre-

sponding to the sample size (order) of the moment.
We denote migration rates mij as the probability that a lineage in population j is replaced by a migrant

lineage from population i (in other words, it is the probability that a lineage in i has a parent in j). We
assume mij � 1 so that at most a single migrant replaces a lineage among the sample of size k � Nj in
population j in any generation. Then in one generation, the change due to migration is

∆ME

[
P∏
i=1

4∏
l=1

ckilil

]
t

=

P∑
i=1

P∑
j=1

δi 6=jmij

4∑
l=1

E
[
kil(cil − cjl)

cjl

]
. (S11)

In words, we sum over each pair of populations i, j and consider the probability that lineages of each type
migrate from population i and copies over a lineage within our sample in population j.

As a simple example, consider the expected frequency at a single locus p1 in population 1 (among P total
populations). Using the above formula, after one generation we find

∆ME[p1] =

P∑
i=2

mi1(E[pi]− E[p1]).

Expected changes due to migration may be found for each term in the system.
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For two populations, with migration rates m12 from population 1 to 2, and m21 from population 2 to 1,
considering the terms (in expectation) in the system

y =



D2
1

D1D2

D2
2

D1z1,1
D1z1,2
D1z2,1
D1z2,2
D2z1,1
D2z1,2
D2z2,1
D2z2,2

π2(1, 1; 1, 1)
π2(1, 1; 1, 2)
π2(1, 1; 2, 2)
π2(1, 2; 1, 1)
π2(1, 2; 1, 2)
π2(1, 2; 2, 2)
π2(2, 2; 1, 1)
π2(2, 2; 1, 2)
π2(2, 2; 2, 2)

H1,1

H1,2

H2,2



,

we obtain the migration operator

M =m12



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 4 −4 0 −4 4 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 −2 0 0 0 4 −4 0 −4 4 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 −2 0 0 0 0 4 −4 0 −4 4 0 0 0 0
0 0 0 0 0 0 1 0 1 1 −3 0 0 0 0 4 −4 0 −4 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 −3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 −3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 −4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −2



+m21



−2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −3 1 1 0 1 0 0 0 4 −4 0 −4 4 0 0 0 0 0 0 0
0 0 0 0 −2 0 1 0 1 0 0 0 4 −4 0 −4 4 0 0 0 0 0 0
0 0 0 0 0 −2 1 0 0 1 0 0 0 0 4 −4 0 −4 4 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 4 −4 0 −4 4 0 0 0
0 0 0 0 0 0 0 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −4 2 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −3 1 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 2 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.
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The two-population drift operator in the migration basis is

D =
1

2N1



−3 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 −5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



+
1

2N2



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 −5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



.

For any number of populations, we have the closed recursion

yt+1 − yt = (DN +Mm +Rr + Uu) yt, (S12)

whereD,R, U , andM are sparse matrices for drift, recombination, mutation, and migration, with population
sizes N and migration rates m.

S1.2.3 Admixture

We find the expected value for terms in basis (5) that include a new admixed population. We assume the
admixed population arises from two parental populations, with lineages arriving from the two populations
with probability f and 1−f . Computing terms involving the admixed population simply requires enumerating
over the haplotype probabilities of lineages arising from each parental population, which have been computed
up to the time of admixture, and then simplifying.

Suppose an admixture event between populations 1 (with proportion f) and 2 (with proportion 1− f),
with P total populations, forms a new population indexed P + 1. Expected haplotype frequencies in the
admixed population depend on f and the expected haplotype frequencies in the source populations. For
example, cP+1,1 (c1 in the admixed population) is equal to fc1,1 + (1− f)c2,1, cP+1,2 = fc1,2 + (1− f)c2,2,
and so on. Cavalli-Sforza and Bodmer (1971) (page 69) used this approach to compute E[D] in an admixed
population (Equation 7).
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For any statistic f(p,q,D), we first convert to c-space variables. Then for each term in the c-space

expansion
∏P+1
i=1

∏4
l=1 ci,l

ki,l , where ci,l represents haplotype l in population i, we compute

P+1∏
i=1

4∏
l=1

ci,l
ki,l =

(
P∏
i=1

4∏
l=1

ci,l
ki,l

)
(fc1,1 + (1− f)c2,1)

kP+1,1 (fc1,2 + (1− f)c2,2)
kP+1,2

× (fc1,3 + (1− f)c2,3)
kP+1,3 (fc1,4 + (1− f)c2,4)

kP+1,4 .

We then convert back to the (p,q,D) variables and simplify. If a term does not include any term with pP+1,
qP+1 or DP+1, it remains remains unchanged. Otherwise, the term can be written as a linear combination
of terms in the P -population basis.

For example, with two populations, with contribution f from population 1 and 1− f from population 2,

E[D2
adm] =f2E[D2

1] + (1− f)2E[D2
2] + 2f(1− f)E[D1D2]

+ 2f2(1− f)E[D1δ] + 2f(1− f)2E[D2δ] + f2(1− f)2E[δ2]. (S13)

E[Diδ] and E[δ2] can be written as linear combinations of terms in the multi-population basis (5). Similar
equations exist for each new term in the basis with the additional admixed population, and this system can
then be integrated forward in time using Equation 6. The full set of equations for arbitrary number of popu-
lation is implemented in our software moments.LD, available at http://www.bitbucket.org/simongravel/
moments.

S1.3 Haplotype frequency spectrum

The allele frequency spectrum (AFS) is the distribution of allele counts in a sample of size n, denoted Φn.
Because Φn is sensitive to demographic and evolutionary processes, it is widely used to infer demographic
history, patterns of selection, and mutation rates. Forward-in-time approaches solve the underlying diffu-
sion equation, which describes the time-evolution of the distribution of allele frequencies in one or more
populations. In one population, this takes the form

∂φ

∂t
=

1

2N

∂2

∂x2
[x(1− x)φ]− s ∂

∂x
[(h+ (1− 2h)x)x(1− x)φ], (S14)

where N is the effective population size and can change over time. Φn can then be found by integrating φ
against the binomial sampling distribution.

Analytic solutions to Equation S14 have only been found for simple scenarios, such as steady-state
solutions. To compute Φn for non-equilibrium demography, we turn to numerical solutions, e.g. (Evans
et al., 2007; Gutenkunst et al., 2009; Lukic and Hey, 2012). Recently, Jouganous et al. (2017) recognized
that the entries of Φn themselves comprise a moments system that allows for direct integration of Φn without
having to numerically solve Equation S14. This system closes under drift, while selection requires a moment-
closure approximation.

The two-locus frequency spectrum (Ψn) is defined similarly to the single locus AFS, but instead tracks
the haplotype frequencies of two-locus pairs. We consider a model that permits two alleles at each of the
two loci: A/a at the left locus, and B/b at the right. Four haplotypes are possible in the two-locus model
(AB,Ab, aB, ab) whose frequencies in the population sum to one. Then Ψn(i, j, k) is the expected number
of two-locus pairs in a sample of size n in which we observe i copies of type AB, j of type Ab, k of type aB,
and n− i− j − k of type ab.

The two-locus frequency spectrum can be found at steady-state using a recursion due to Golding (1984).
For non-equilibrium demography, Kamm et al. (2016) presented a coalescent approach for Ψn via a Moran
model closely related to the look-down approach of Donnelly and Kurtz (1999). Alternatively, Ψn can be
found by first solving the associated two-locus diffusion equation ψ (Kimura, 1955; Hill and Robertson, 1966),
the density of two-locus haplotype frequencies in the population,

∂ψ

∂t
=

1

2

∑∑
1≤i,j≤3

∂2

∂xi∂xj

[
xi(δij − xj)ψ

N(t)

]
+
ρ

2

(
∂

∂x1
[Dψ]− ∂

∂x2
[Dψ]− ∂

∂x3
[Dψ]

)
, (S15)
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shown here without terms for selection and D = x1(1−x1−x2−x3)−x2x3, and then integrating ψ against
the multinomial sampling distribution. Ragsdale and Gutenkunst (2017) solved Equation S15 using finite
differences, which they used in single-population demographic inference. The advantage to the diffusion
approach is that selection is easily incorporated at one or both loci, which allows us to directly model the
effect of linked selection with any recombination recombination rate and non-equilibrium demography.

In Sections S1.3.1, S1.3.2, S1.3.3, and S1.3.4 instead of finding a numerical solution to Equation S15, we
show that we can directly solve for Ψn through a recursion on its entries just as Jouganous et al. (2017)
proposed for the single-locus AFS. By considering how haplotype frequencies within n tracked lineages are
expected to change due to drift, recombination, selection, and mutation, we obtain the recursion

Ψt+1
n (i, j, k)−Ψt

n(i, j, k) =D2N(t),n;i,j,kΨt
n + UuΨt

n +RrΨt
n+1 + Ss,hΨt

n+2. (S16)

Here, D is a sparse matrix to account for drift, R accounts for recombination with rate r, S for selection
with arbitrary selection and dominance coefficients for each haplotype, and U is a mutation operator for
either an infinite sites or reversible mutation model.

Under drift and mutation, in the neutral case and with no recombination, Equation S16 is closed and can
be solved exactly. With selection and recombination, Ψn relies on the slightly larger frequency spectra Ψn+1

and Ψn+2, and so the system does not close. Intuitively, drift closes because we are just concerned with
lineages copying over each other within the subsample of n tracked lineages. However, we require additional
lineages in the case of non-zero recombination and selection. If a recombination event occurs within our n
tracked lineages, we require an additional lineage to be drawn from the full population for the recombining
lineage to be paired with. In the case of selection, a replacement lineage must be drawn from the entire
population, so we need to know the expected distribution of a larger size sample. We close the system
using a jackknife extrapolation, which estimates Ψn+l using the known Ψn, as was done for the single locus
frequency spectrum in Jouganous et al. (2017). In practice, we find the jackknife to be reasonably accurate
for moderate sample sizes (n & 20), with accuracy increasing in n (Table A1).

Below, we derive each operator in turn. We consider tracking a subsample of n lineages in the population
and find how drift, mutation, recombination, and selection are each expected to change probabilities of
two-locus haplotype frequencies in a given generation.

S1.3.1 Drift

Just as in Section S1.1.1, transition probabilities for Ψn are derived by considering haplotype frequencies
within a sample of size n. Allele frequencies within the subsample of n lineages change due to drift in
one generation if one lineage within the n subsampled lineages copies itself onto another lineage within our
subsample. For simplicity, we assume n � N , so that at most a single copying event occurs between two
of the n lineages in any given generation. Generalization to multiple coalescences per generation could be
performed as in Jouganous et al. (2017).

The probability of a single copying event within the sample in a single generation at time t (to leading
order in 1/N) is

Pn,N (1→ 2) =
1

2N(t)

(
n

2

)
, (S17)

the classical large-population limit from coalescence theory. In the case of a copying event, one lineage is
drawn twice and another is not drawn. Haplotype frequencies will only change if the two drawn lineages
differ in state.

We compute the probability of all possible haplotype frequency changes ((i, j, k) → (i′, j′, k′)) in one
generation, given a coalescent event occurs. For example, frequencies change from (i, j, k) to (i+1, j−1, k) if
an AB lineage is chosen to copy over an Ab lineage. (Note that in this section we switch to the more familiar
notation i, j, k to denote counts of AB, Ab, and ab haplotypes, respectively. This is analogous to the c-space
notation in our derivation of the Hill-Robertson recursion, and the drift operator presented here is closely
related to Equation S6.) For a given frequency bin (i, j, k), this occurs if we first choose an AB lineage
that copies itself twice (with probability i/n), then choose an Ab lineage to be copied over (with probability
j/(n−1)), scaled by the density of two-locus haploypes with those frequencies (Ψn(i, j, k)). Together we get

P1→2((i, j, k)→ (i+ 1, j − 1, k)) =
i

n

j

n− 1
Ψn(i, j, k). (S18)

11



We account for all possible changes in haplotype frequencies due to copying events in this way:

P1→2((i, j, k)→ (i+ 1, j, k)) =
i

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i− 1, j, k)) =
i

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i, j + 1, k)) =
j

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i, j − 1, k)) =
j

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i, j, k + 1)) =
k

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i, j, k − 1)) =
k

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i+ 1, j − 1, k)) =
i

n

j

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i+ 1, j, k − 1)) =
i

n

k

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i− 1, j + 1, k)) =
i

n

j

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i− 1, j, k + 1)) =
i

n

k

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i, j + 1, k − 1)) =
j

n

k

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i, j − 1, k + 1)) =
j

n

k

n− 1
Ψn(i, j, k)

P1→2((i− 1, j, k)→ (i, j, k)) =
i− 1

n

n− i− j − k + 1

n− 1
Ψn(i− 1, j, k)δi>0

P1→2((i+ 1, j, k)→ (i, j, k)) =
i+ 1

n

n− i− j − k − 1

n− 1
Ψn(i+ 1, j, k)δi<n

P1→2((i, j − 1, k)→ (i, j, k)) =
j − 1

n

n− i− j − k + 1

n− 1
Ψn(i, j − 1, k)δj>0

P1→2((i, j + 1, k)→ (i, j, k)) =
j + 1

n

n− i− j − k − 1

n− 1
Ψn(i, j + 1, k)δj<n

P1→2((i, j, k − 1)→ (i, j, k)) =
k − 1

n

n− i− j − k + 1

n− 1
Ψn(i, j, k − 1)δk>0

P1→2((i, j, k + 1)→ (i, j, k)) =
k + 1

n

n− i− j − k − 1

n− 1
Ψn(i, j, k + 1)δk<n

P1→2((i− 1, j + 1, k)→ (i, j, k)) =
i− 1

n

j + 1

n− 1
Ψn(i− 1, j + 1, k)δi>0

P1→2((i− 1, j, k + 1)→ (i, j, k)) =
i− 1

n

k + 1

n− 1
Ψn(i− 1, j, k + 1)δi>0

P1→2((i+ 1, j − 1, k)→ (i, j, k)) =
i+ 1

n

j − 1

n− 1
Ψn(i+ 1, j − 1, k)δj>0

P1→2((i+ 1, j, k − 1)→ (i, j, k)) =
i+ 1

n

k − 1

n− 1
Ψn(i+ 1, j, k − 1)δk>0

P1→2((i, j − 1, k + 1)→ (i, j, k)) =
j − 1

n

k + 1

n− 1
Ψn(i, j − 1, k + 1)δj>0

P1→2((i, j + 1, k − 1)→ (i, j, k)) =
j + 1

n

k − 1

n− 1
Ψn(i, j + 1, k − 1)δk>0

Taken together, we obtain Dn(i, j, k).

S1.3.2 Mutation

The moment system for Ψn allows for flexible mutation operators. Both the infinite sites model (ISM) and
a reversible mutation model are straightforward to derive and implement.
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For the ISM model, mutations at each locus occur only once from ancestral to derived state. We suppose
the mutation rate at the left locus is u1 (for a → A) and at the right locus is u2 (b → B). For a two-locus
pair to segregate at both loci, a mutation must first occur at one of the loci, and then a mutation must occur
at the second locus while the first locus is still segregating. For the first mutation, we introduce density in
the singleton bins (one copy of either Ab or aB) as

UΨn(0, 1, 0) = nu1, (S19)

UΨn(0, 0, 1) = nu2. (S20)

The second mutation, which occurs while the first locus is already segregating, introduces pairs of seg-
regating loci proportional to the marginal single locus AFS at each locus. We account for whether, for
example, a mutation a→ A occurs on a B or b background:

UΨn(1, j, 0) = u2(j + 1)Ψn(0, j + 1, 0) ∀j ∈ {0, 1, . . . , n− 1} (S21)

UΨn(0, j, 1) = u2(n− j)Ψn(0, j, 0) ∀j ∈ {1, 2, . . . , n} (S22)

UΨn(1, 0, k) = u1(k + 1)Ψn(0, 0, k + 1) ∀k ∈ {0, 1, . . . , n− 1} (S23)

UΨn(0, 1, k) = u1(n− k)Ψn(0, 0, k) ∀k ∈ {1, 2, . . . , n}. (S24)

We can allow recurrent, reversible mutations, with rates

a
u1−⇀↽−
v1

A and b
u2−⇀↽−
v2

B. (S25)

In this case, there are no absorbing states. For example, the probability that a mutation event a → A
occurs (u1) that changes an aB haplotype to an AB haplotype depends on the number of aB haplotypes
present in the sample (k) and the probability of observing the required haplotype frequencies Ψn(i, j, k).
Then Pmut((i, j, k)→ (i+ 1, j, k − 1)) = u1(k)Ψn(i, j, k). All together, the mutation operator is

UrevΨn(i, j, k) =u1(k + 1)Ψn(i− 1, j, k + 1)− u1(k)Ψn(i, j, k)

+ u1(n− i− j − k + 1)Ψn(i, j − 1, k)− u1(n− i− j − k)Ψn(i, j, k)

+ v1(i+ 1)Ψn(i+ 1, j, k − 1)− v1(i)Ψn(i, j, k)

+ v1(j + 1)Ψn(i, j + 1, k)− v1(j)Ψn(i, j, k)

+ u2(j + 1)Ψn(i− 1, j + 1, k)− u2(j)Ψn(i, j, k)

+ u2(n− i− j − k + 1)Ψn(i, j, k − 1)− u2(n− i− j − k)Ψn(i, j, k)

+ v2(i+ 1)Ψn(i+ 1, j − 1, k)− v2(i)Ψn(i, j, k)

+ v2(k + 1)Ψn(i, j, k + 1)− v2(k)Ψn(i, j, k).

S1.3.3 Recombination

Here we derive the probabilities for transitions in frequencies due to recombination events, where a lineage
in the sample is chosen to recombine with a lineage drawn from the full population, and one of the two
recombinant types replaces the chosen lineage. Because we need to choose an extra lineage from the full
population, RΨn depends on Ψn+1, leading to the system being unclosed. For example, we write the
probability of recombination between an ab type lineage from within our n subsampled lineages and an
AB haplotype from the full population, and subsequently changing frequencies from (i, j, k) to (i′, j′, k′), as
Rab×AB((i, j, k)→ (i′, j′, k′)). These probabilities are

Rab×AB((i, j, k)→ (i, j + 1, k)) =
1

2
Ψn+1(i+ 1, j, k)

n− i− j − k
n+ 1

i+ 1

n

Rab×AB((i, j, k)→ (i, j, k + 1)) =
1

2
Ψn+1(i+ 1, j, k)

n− i− j − k
n+ 1

i+ 1

n

Rab×Ab((i, j, k)→ (i, j + 1, k)) =
1

2
Ψn+1(i, j + 1, k)

n− i− j − k
n+ 1

j + 1

n

Rab×aB((i, j, k)→ (i, j, k + 1)) =
1

2
Ψn+1(i, j, k + 1)

n− i− j − k
n+ 1

k + 1

n
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RaB×AB((i, j, k)→ (i+ 1, j, k − 1)) =
1

2
Ψn+1(i+ 1, j, k)

k

n+ 1

i+ 1

n

RaB×Ab((i, j, k)→ (i+ 1, j, k − 1)) =
1

2
Ψn+1(i, j + 1, k)

k

n+ 1

j + 1

n

RaB×Ab((i, j, k)→ (i, j, k − 1)) =
1

2
Ψn+1(i, j + 1, k)

k

n+ 1

j + 1

n

RaB×ab((i, j, k)→ (i, j, k − 1)) =
1

2
Ψn+1(i, j, k)

k

n+ 1

n− i− j − k + 1

n

RAb×AB((i, j, k)→ (i+ 1, j − 1, k)) =
1

2
Ψn+1(i+ 1, j, k)

j

n+ 1

i+ 1

n

RAb×aB((i, j, k)→ (i+ 1, j − 1, k)) =
1

2
Ψn+1(i, j, k + 1)

j

n+ 1

k + 1

n

RAb×aB((i, j, k)→ (i, j − 1, k)) =
1

2
Ψn+1(i, j, k + 1)

j

n+ 1

k + 1

n

RAb×ab((i, j, k)→ (i, j − 1, k)) =
1

2
Ψn+1(i, j, k)

j

n+ 1

n− i− j − k + 1

n

RAB×Ab((i, j, k)→ (i− 1, j, k)) =
1

2
Ψn+1(i, j, k)

i

n+ 1

j + 1

n

RAB×aB((i, j, k)→ (i− 1, j, k)) =
1

2
Ψn+1(i, j, k)

i

n+ 1

k + 1

n

RAB×ab((i, j, k)→ (i− 1, j, k)) =
1

2
Ψn+1(i, j + 1, k)

i

n+ 1

n− i− j − k + 1

n

RAB×ab((i, j, k)→ (i− 1, j, k)) =
1

2
Ψn+1(i, j, k + 1)

i

n+ 1

n− i− j − k + 1

n

and

Rab×AB((i, j − 1, k)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j − 1, k)

n− i− j − k + 1

n+ 1

i+ 1

n

Rab×AB((i, j, k − 1)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j, k − 1)

n− i− j − k + 1

n+ 1

i+ 1

n

Rab×Ab((i, j − 1, k)→ (i, j, k)) =
1

2
Ψn+1(i, j, k)

n− i− j − k + 1

n+ 1

j

n

Rab×aB((i, j, k − 1)→ (i, j, k)) =
1

2
Ψn+1(i, j, k)

n− i− j − k + 1

n+ 1

k

n

RaB×AB((i− 1, j, k + 1)→ (i, j, k)) =
1

2
Ψn+1(i, j, k + 1)

k + 1

n+ 1

i

n

RaB×Ab((i− 1, j, k + 1)→ (i, j, k)) =
1

2
Ψn+1(i− 1, j + 1, k + 1)

k + 1

n+ 1

j + 1

n

RaB×Ab((i− 1, j, k + 1)→ (i, j, k)) =
1

2
Ψn+1(i, j + 1, k + 1)

k + 1

n+ 1

j + 1

n

RaB×ab((i, j, k + 1)→ (i, j, k)) =
1

2
Ψn+1(i, j, k + 1)

k + 1

n+ 1

n− i− j − k
n

RAb×AB((i− 1, j + 1, k)→ (i, j, k)) =
1

2
Ψn+1(i, j + 1, k)

j + 1

n+ 1

i

n

RAb×aB((i− 1, j + 1, k)→ (i, j, k)) =
1

2
Ψn+1(i− 1, j + 1, k + 1)

j + 1

n+ 1

k + 1

n

RAb×aB((i, j + 1, k)→ (i, j, k)) =
1

2
Ψn+1(i, j + 1, k + 1)

j + 1

n+ 1

k + 1

n

RAb×ab((i, j + 1, k)→ (i, j, k)) =
1

2
Ψn+1(i, j + 1, k)

j + 1

n+ 1

n− i− j − k
n

RAB×Ab((i+ 1, j − 1, k)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j, k)

i+ 1

n+ 1

j

n

RAB×aB((i+ 1, j, k − 1)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j, k)

i+ 1

n+ 1

k

n

RAB×ab((i+ 1, j − 1, k)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j − 1, k)

i+ 1

n+ 1

n− i− j − k + 1

n
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RAB×ab((i+ 1, j, k − 1)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j, k − 1)

i+ 1

n+ 1

n− i− j − k + 1

n

Multiplying by the probability that a recombination event occurs on a lineage in our sample (nr, assuming
r � 1), and then cancelling terms and simplifying, we find

Rn,rΨn(i, j, k) = nr×
[
Ψn+1(i+ 1, j − 1, k)

i+ 1

n+ 1

n− i− j − k + 1

n

+ Ψn+1(i+ 1, j, k − 1)
i+ 1

n+ 1

n− i− j − k + 1

n

+ Ψn+1(i− 1, j + 1, k + 1)
j + 1

n+ 1

k + 1

n

+ Ψn+1(i− 1, j + 1, k + 1)
j + 1

n+ 1

k + 1

n

−Ψn+1(i+ 1, j, k)
i+ 1

n+ 1

n− i− j − k
n

−Ψn+1(i, j + 1, k)
j + 1

n+ 1

k

n

−Ψn+1(i, j, k + 1)
j

n+ 1

k + 1

n

−Ψn+1(i, j, k)
i

n+ 1

n− i− j − k + 1

n

]
.

S1.3.4 Selection

Here, we consider a model that allows selection at the left locus (A/a). In this setting we model a neutral
locus linked to a selected locus separated by arbitrary recombination rate. We suppose A has selection and
dominance coefficients s (with |s| � 1) and h, so that a diploid carrying AA has relative fitness (1 + s)
compared to a aa diploid, while the heterozygote Aa has relative fitness (1 +hs). If h = 1/2, this reduces to
the simple haploid selection model with A having fitness (1 + s) relative to a.

We consider how selection is expected to change haplotype frequencies over a given generation. As was
the case for recombination and drift events above, there are many possible haplotype frequency changes that
may occur due to a selection event.

For example, suppose that selection acts against the A allele (s < 0). We want to estimate the probability
of events where, for example, a selection event occurs in which an AB lineage fails to replicate to the
subsequent generation and is replaced by an Ab haplotype, drawn from the full population. The AB lineage
is eliminated with probability −s if the parent is a homozygote at the A/a locus (i.e. its diploid pair is
type AB or Ab), and it is eliminated with probability −sh if a heterozygote (i.e. paired with aB or ab).
To compute the probability of any such event, we must draw two additional lineages from the population
(one for the diploid pairing and one for the replacement lineage) in addition to the n tracked lineages in Ψn.
Thus, we require Ψn+2 to compute the evolution of Ψn.

Here, we write the probability that an AB lineage paired with aB is replaced by an Ab lineage as
S(aB,AB)←Ab. This event has probability

S(aB,AB)←Ab = −sh · n ·Ψn+2(i, j + 1, k + 1)

(
i
1

)(
j+1
1

)(
k+1
1

)(
n
3

) 1

6
, (S26)

where we account for choosing the three necessary lineages in the correct order. Probabilities for the other
three possible diploid pairings take a similar form:

S(AB,AB)←Ab = −s · n ·Ψn+2(i+ 1, j + 1, k + 1)

(
i+1
2

)(
j+1
1

)(
n
3

) 1

3

S(Ab,AB)←Ab = −s · n ·Ψn+2(i, j + 2, k)

(
i
1

)(
j+2
2

)(
n
3

) 1

3
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S(ab,AB)←Ab = −sh · n ·Ψn+2(i, j + 1, k)

(
j+1
1

)(
k+1
1

)(
n−i−j−k+1

1

)(
n
3

) 1

6
.

Accounting for all possible selection events (including the replaced lineage, its diploid pair, and the
replacement lineage), we find the selection operator

Sn,s,h =s

{
h

n+ 1

[
(i+ j)(k + 1)Ψn+1(i, j, k + 1)+ (S27)

+ (i+ j)(n− i− j − k + 1)Ψn+1(i, j, k)

− (i+ 1)(n− i− j)Ψn+1(i+ 1, j, k)

− (j + 1)(n− i− j)Ψn+1(i, j + 1, k)

]
+

1− 2h

(n+ 2)(n+ 1)

[
(i+ 1)(k + 1)(i+ j)Ψn+2(i+ 1, j, k + 1)

+ (i+ 1)(n− i− j − k + 1)(i+ j)Ψn+2(i+ 1, j, k)

+ (j + 1)(k + 1)(i+ j)Ψn+2(i, j + 1, k + 1)

+ (j + 1)(n− i− j − k + 1)(i+ j)Ψn+2(i, j + 1, k)

− (i+ 2)(i+ 1)(n− i− j)Ψn+2(i+ 2, j, k)

− 2(i+ 1)(j + 1)(n− i− j)Ψn+2(i+ 1, j + 1, k)

− (j + 2)(j + 1)(n− i− j)Ψn+2(i, j + 2, k)

]}
.

Here we’ve used the downsampling formula to simplify the additive terms: if h = 1/2, S only requires Ψn+1

since selection is independent of the state of the paired lineage.

S1.3.5 Moment closure approximation for Ψn

Because neither recombination nor selection close in the full two-locus haplotype frequency system, we require
a moment closure approximation to integrate Equation S16 forward in time. Here we will use a jackknife
extrapolation, similar to Jouganous et al. (2017) for the single locus AFS, to express Ψn+2 and Ψn+1 as
linear combinations of Ψn, so that

Ψn+l(i, j, k) ≈
∑

(i′,j′,k′)∈I(i,j,k)

w(i′,j′,k′)Ψn(i′, j′, k′), (S28)

where l ∈ 1, 2 and the entries (i′, j′, k′) ∈ I(i,j,k) are chosen so that (i′/n, j′/n, k′/n) are close to (i/(n +
l), j/(n+ l), k/(n+ l)). Each choice l will have its own set I and weights w.

We then find the appropriate set of entries I and weights w, for a given l and entry in that frequency
spectrum. First, we note that for any continuous function ψ that solves Equation S15, we can find the entries
of Ψn(i, j, k) for any n, i, j, k, using the multinomial sampling formula

Ψn(i, j, k) =

∫∫∫
x,y,z≥0,
x+y+z≤1

ψ(x, y, z)

(
n

i, j, k

)
xiyjzk(1− x− y − z)n−i−j−k dx dy dz. (S29)

We make the assumption here that ψ can be approximated locally as a quadratic, so that

ψ(x, y, z) ≈ a1 + a2x+ a3y + a4z + a5x
2 + a6xy + a7xz + a8y

2 + a9yz + a10z
2. (S30)

Using this approximation of ψ, the multinomial sampling integral can be computed analytically, to get

Ψ̃n(i, j, k) =
1

(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)

[
a1(n+ 5)(n+ 4) + a2(n+ 5)(i+ 1) (S31)
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+ a3(n+ 5)(j + 1) + a4(n+ 5)(k + 1)

+ a5(i+ 2)(i+ 1) + a6(i+ 1)(j + 1)

+ a7(i+ 1)(k + 1) + a8(j + 2)(j + 1)

+ a9(j + 1)(k + 1) + a10(k + 2)(k + 1)
]

For a given Ψn(i, j, k) we take the ten closest values I = {(i′1, j′1, k′1), (i′2, j
′
2, k
′
2), . . . , (i′10, j

′
10, k

′
10)} as

described above, with the added condition that the sets of {i′}, {j′}, and {k′} each have size at least three.
We then set

Ψ̃n+l(i, j, k) =
∑

w(i′,j′,k′)Ψ̃n(i′, j′, k′). (S32)

This holds for any ψ, so we set (a1, a2, . . . , a10) = (1, 0, . . . , 0), (a1, a2, . . . , a10) = (0, 1, . . . , 0), etc, in turn
to get a system of equations for the weights wm = w(i′m,j

′
m,k
′
m), m = 1, . . . , 10:

(n+3)!(n+l)!
n!(n+3+l)! =

∑10
m=1 wm

(n+4)!(n+l)!
n!(n+4+l)! =

∑10
m=1(i′m + 1)wm

(n+4)!(n+l)!
n!(n+4+l)! =

∑10
m=1(j′m + 1)wm

(n+4)!(n+l)!
n!(n+4+l)! =

∑10
m=1(k′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(i′m + 2)(i′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(i′m + 1)(j′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(i′m + 1)(k′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(j′m + 2)(j′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(j′m + 1)(k′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(k′m + 2)(k′m + 1)wm,

which can be solved either analytically or numerically.

S1.3.6 Comparing methods to compute Ψn

We compared the accuracy and computational time needed for computing Ψn using the numerical PDE
approach presented in Ragsdale and Gutenkunst (2017) and the moment approach presented here. We per-
formed this comparison for n ∈ {30, 50} and ρ ∈ {0, 10}. We considered two demographic models for each
sample size and recombination rate: equilibrium demography with no size changes, and a bottleneck demog-
raphy. In the bottleneck demographic model the population is initially at steady state, then instantaneously
changes in size to 1/10 the original size for 0.05 time units (measured in 2Ne), and then it recovers to the
original size for 0.2 time units.

For the equilibrium Ψn, we compared to Hudson’s Monte Carlo implementation (described in Hud-
son (2001) and available from the author’s website) for n = 100 projected down to sample sizes n = 30
and n = 50. We projected from a larger sample size for improved accuracy in Hudson’s estimate and
considered this distribution the “true” distribution to compare against. For the bottleneck distribution,
we computed a numerical approximation with a larger sample size (n = 80) and 100x smaller time step
than the default using moments.TwoLocus and then projected to n = 30 and n = 50. To compute Ψn

in ∂a∂i, we numerically solve for Ψn for three grid spacings and three time steps, and then perform
Richardson extrapolation (detailed in Ragsdale and Gutenkunst (2017)). We set integration time steps
to [0.005, 0.0025, 0.001] and grid points [40, 50, 60] for n = 30 and [60, 70, 80] for n = 50. We measured
accuracy as

∑
(Ψn(model) − Ψn(True))2/Ψn(True). In general, moments performs favorably compared to

∂a∂i, with orders of magnitude improved accuracy and faster integration and evaluation (Table A1).

S1.4 Deriving moment equations from the PDE

So far we have derived recursion equations in both the Hill-Robertson basis and for the full haplotype
frequency spectrum by tracking an appropriately sized subset of lineages within the full population and
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considering the effects such as drift and recombination within these lineages. The statistics in these recursion
equations are all non-canonical moments of the full two-locus distribution. Thus an alternative route to
deriving all of the recursion equations presented in this paper is directly through the partial differential
equation (PDE) describing the evolution of this full distribution.

Classically, two equivalent PDEs describing this distribution were studied, one in the variables of hap-
lotype frequencies (x1, x2, x3, x4) and the other in the variables (p, q,D) (Hill and Robertson, 1966; Ohta
and Kimura, 1969b). In this section, we outline the approach to obtain the Hill-Robertson D2 system from
the latter of these bases, do the same for the haplotype frequency spectrum Ψn, and then intuitively discuss
why recombination closes in the Hill-Robertson basis but not the haplotype frequency basis from a PDE
perspective.

Without selection, the neutral two-locus distribution ψ(p, q,D) follows the forward Kolmogorov equation,

∂ψ

∂τ
=

1

2

∂2

∂p2
(p(1− p)ψ) +

1

2

∂2

∂q2
(q(1− q)ψ) +

∂2

∂p∂q
(Dψ) +

∂2

∂p∂D
(D(1− 2p)ψ) +

∂2

∂q∂D
(D(1− 2q)ψ)

+
1

2

∂2

∂D2

((
p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2

)
ψ
)

+
∂

∂D

(
D
(

1 +
ρ

2

)
ψ
)
, (S33)

where time τ is measured in 2N generations. To obtain the time evolution of any moment of this distribution,
we take

∂τE[f(p, q,D)] =
∂

∂τ

∫
ψf(p, q,D)

=

∫
∂ψ

∂τ
f(p, q,D)

=

∫
(RHS)f(p, q,D),

where RHS are the terms in Equation S33. Here, we have abused the integral notation, and it should be
understood to be the triple integral over the domain of the function ψ.

For the D2 system, we first find ∂τE[D2]:

∂τE[D2] =
1

2

∫
D2 ∂

2

∂p2
p(1− p)ψ +

1

2

∫
D2 ∂

2

∂q2
q(1− q)ψ +

∫
D2 ∂

∂p∂q
pqψ

+

∫
D2 ∂2

∂p∂D
D(1− 2p)ψ +

∫
D2 ∂2

∂p∂D
D(1− 2p)ψ

+
1

2

∫
D2 ∂2

∂D2

(
p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2

)
ψ

+

∫
D2 ∂

∂D
D
(

1 +
ρ

2

)
ψ

IBP
=

∫ (
p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2

)
ψ − 2

∫
D2
(

1 +
ρ

2

)
ψ

= − 3E[D2] + E[D(1− 2p)(1− 2q)] + E[p(1− p)q(1− q)]− ρE[D2],

which recovers, to first order, the Hill-Robertson equation for E[D2]. Surface terms vanish since the functions
decay to zero at the boundary. The other two terms in the system can by found by similarly integrating by
parts:

∂τE[D(1− 2p)(1− 2q)] = 4E[D2]− 5E[D(1− 2p)(1− 2q)]− ρ

2
E[D(1− 2p)(1− 2q)]

∂τE[p(1− p)q(1− q)] = E[D(1− 2p)(1− 2q)]− 2E[p(1− p)q(1− q)]

An equivalent PDE for ψ is expressed in haplotype frequencies (x1, x2, x3):

∂ψ

∂τ
=

1

2

3∑
i=1

3∑
j=1

∂2

∂xi∂xj
xi(δij − xj)ψ +

ρ

2

(
∂

∂x1
Dψ − ∂

∂x2
Dψ − ∂

∂x3
Dψ

)
, (S34)
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where δij is the Kronecker delta function, and formally D = x1(1 − x1 − x2 − x3) − x2x3. The first set of
terms in the double sum account for drift, and the second set of terms account of recombination with scaled
rate ρ.

We want to find evolution equations for Ψn(i, j, k), and we take a similar approach as above. Given the
continuous distribution ψ, we compute Ψn(i, j, k) by integrating ψ against the multinomial distribution:

Ψn(i, j, k) =

∫∫∫ (
n

i, j, k, n− i− j − k

)
xi1x

j
2x
k
3(1− x1 − x2 − x3)n−i−j−kψ(x1, x2, x3),

where
(

n
i,j,k,n−i−j−k

)
= n!

i!j!k!(n−i−j−k)! is the multinomial coefficient. Then integrating both sizes of Equa-

tion S34 against this sampling function, we can find

∂τΨn(i, j, k) =

∫∫∫ (
n

i, j, k, n− i− j − k

)
xi1x

j
2x
k
3(1− x1 − x2 − x3)n−i−j−k1

2

3∑
i=1

3∑
j=1

∂2

∂xi∂xj
xi(δij − xj)ψ +

ρ

2

(
∂

∂x1
Dψ − ∂

∂x2
Dψ − ∂

∂x3
Dψ

) .

In brief, for the drift terms we integrate by parts twice, obtain a series of multinomial sampling functions
against ψ, and then simplify. This results in the same set of equations as derived above by computing copying
probabilities. This derivation follows closely the approach described in Jouganous et al. (2017) for the single
site AFS.

To understand closure properties, we can consider whether the order of terms on the RHS is always equal
or smaller to n. If so, the set of all moments of order n will only ever require moments of order less than
or equal to n, ensuring closure of the moment equation. When counting the order of terms on the RHS, we
must subtract one for each derivative: in the integration by part, each derivative reduces the degree of the
polynomial coefficient by at least one. Thus the drift term on the RHS has order n and closes, whereas the
recombination term has order n+ 1, and as a result does not close.

S1.4.1 Closure of Hill-Robertson moments

Any order moment system for E[Dm] closes under drift and recombination. First, we observe that the
recombination transition matrix will be diagonal by considering the PDE without the drift terms: ψτ =
ρ
2 (Dψ)D. For any moment E[Dαf(p, q)], we get

∂τE[Dαf(p, q)] =
ρ

2

∫
Dαf(p, q)

∂

∂D
Dψ

= −αρ
2

∫
Dαf(p, q)ψ = −αρ

2
E[Dαf(p, q)].

Thus any basis of moments expressed as a functions of (p, q,D) will close under recombination.
Intuitively, for any moment f(p, q,D) we can expect to find a closed system for its evolution under drift.

This can be seen from the PDE for ψ (Equation S33): the coefficient of each spatial derivative has order
equal to the derivative. Thus integrating by parts does not result in any moments of ψ of higher order than
the original moment f . Since there are a finite number of moments of any given order, this system must also
be finite in size, and thus necessarily close.

Here we compute the recursion for the Dm system (for m even) and explicitly demonstrate that it
closes by considering the new terms required to compute E[Dm]. Again, we define π2 = p(1 − p)q(1 − q),
z = (1− 2p)(1− 2q), and σj = pj(1− p)j + qj(1− q)j .

First, suppose that the Dm−2 system closes. The Dm−2 system contains all terms{
E[Dm−2i−2j−k−2πi2z

kσj ]
}
, for k ∈ {0, 1}, j ∈

{
0, 1, . . . ,

m− 2k − 2

2

}
, i ∈

{
0, 1, . . . ,

m− 2k − 2j − 2

2

}
.

It also contains all terms in the Dm−4 system, which take the same form as above, and so on. By computing
∂τE[Dm] and its dependent terms, we find that all terms are present in the Dm−2 system or are in{

E[Dm−2i−2j−kπi2z
kσj ]

}
, for k ∈ {0, 1}, j ∈

{
0, 1, . . . ,

m− 2k

2

}
, i ∈

{
0, 1, . . . ,

m− 2k − 2j

2

}
. (S35)
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For the mth moment of D, we can use this same approach to obtain moment dependencies and compute
evolution equations, just as we did in the previous section for the Hill-Robertson system. For E[Dm] (here
showing just the terms for drift), by integrating by parts, we have

∂τE[Dm] =
1

2

∫
Dm ∂2

∂D2

(
π2 +Dz −D2

)
ψ +

∫
Dm ∂

∂D
Dψ

=
m(m− 1)

2

∫
Dm−2 (π2 +Dz −D2

)
ψ −m

∫
Dmψ

= −m(m+ 1)

2
E[Dm] +

m(m− 1)

2
E[Dm−1z] +

m(m− 1)

2
E[Dm−2π2].

In the same way, we compute the time derivative for each dependent moment:

∂τE[Dm−1z] = 4E[Dm]− (m+ 8)(m− 1)

2
E[Dm−1z] + 8(m− 1)(m− 2)E[Dm−2π2]

− 2(m− 1)(m− 2)E[Dm−2σ1] +
(m− 1)(m− 2)

2
E[Dm−2] +

(m− 1)(m− 2)

2
E[Dm−3π2z]

∂τE[Dm−2π2] = E[Dm−1z]− 1

2
(m2 + 13m− 26)E[Dm−2π2] + (m− 2)E[Dm−2σ1]

+
(m− 2)(m− 3)

2
E[Dm−3π2z] +

(m− 2)(m− 3)

2
E[Dm−4π2

2 ],

...

∂τE[Dm−2iπi2] = i2E[Dm−2i+1πi−1
2 z]− m2 + (1 + 12i)m− 2i(3 + 10i)

2
E[Dm−2iπi2]

(im− i(1 + 3i)/2)E[Dm−2iπi−1
2 σ1] +

(m− i+ 1)(m− i)
2

E[Dm−2i−1πi2z]

+
(m− i+ 1)(m− i)

2
E[Dm−2i−2πi+1

2 ]

∂τE[Dm−2i−1πi2z] = 4(1 + 2i)2E[Dm−2iπi2]− 2i(1 + 2i)E[Dm−2iπi−1
2 z] + i2E[Dm−2iπi−1

2 ]

− m2 + (7 + 12i)m− 2(10i2 + 13i+ 4)

2
E[Dm−2i−1πi2z]

+ (im− 3i(i+ 1)/2)E[Dm−2i−1πi−1
2 zσ1] + 8(m− 2i− 2)(m− 2i− 1)E[Dm−2i−2πi+1

2 ]

− 2(m− 2i− 2)(m− 2i− 1)E[Dm−2i−2πi2σ1] +
(m− 2i− 2)(m− 2i− 1)

2
E[Dm−2i−2πi2]

+
(m− 2i− 2)(m− 2i− 1)

2
E[Dm−2i−3πi+1

2 z]

...

∂τE[Dπ
m−2

2
2 z] =

(m− 1)2

4
E[D2π

m−2
2

2 ]− (m− 2)(m− 1)E[D2π
m−4

2
2 σ1] +

(m− 2)2

4
E[D2π

m−4
2

2 ]

− (m2 +m− 1)E[Dπ
m−2

2
2 z] +

m(m− 2)

2
E[Dπ

m−4
2

2 zσ1]

∂τE[π
m
2
2 ] =

m2

4
E[Dπ

m−2
2

2 z]−m(m− 1)E[π
m
2
2 ] +

m(m− 2)

8
E[π

m−2
2

2 σ1]

The evolution for the terms computed here require those already considered, terms in the Dm−2 system, or
additional terms of the form

{Dm−2σ1, D
m−3zσ1, D

m−4π2σ1, . . . , π
m−2

2
2 σ1}.

In general, for j > 0, k ∈ {0, 1}, i ∈ {0, . . . , (m−2j−2k)/2}, we have terms of the form E[Dm−2i−2j−kπi2z
kσj ].

We compute transition probabilities for each of these terms:

∂τE[Dm−2jσj ] = − m2 + (4j + 1)m− 4i(1 + 2i)

2
E[Dm−2jσj ] + (im+ i(1 + 3i)/2)E[Dm−2jσj−1]

+
(m− 2j − 1)(m− 2j)

2
E[Dm−2j−1zσj ] +

(m− 2j − 1)(m− 2j)

2
E[Dm−2j−2π2σj ]
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∂τE[Dm−2j−1zσj ] = 4(1 + 2i)E[Dm−2jσj ]− 2iE[Dm−2jσj−1]

− m2 + (7 + 4i)m− 4(i+ 2(1 + i)2)

2
E[Dm−2j−1zσj ]

+ (4m− 3i(i+ 1)/2)E[Dm−2j−1zσj−1] + 8(m− 2j − 2)(m− 2j − 1)E[Dm−2j−2π2σj ]

− 2(m− 2j − 2)(m− 2j − 1)E[Dm−2j−2π2σj−1]− 2(m− 2j − 2)(m− 2j − 1)E[Dm−2j−2σj+1]

+
(m− 2j − 2)(m− 2j − 1)

2
E[Dm−2j−2σj ] +

(m− 2j − 2)(m− 2j − 1)

2
E[Dm−2j−3π2zσj ]

...

∂τE[Dπ
m−2−2j

2
2 zσj ] = 4(m− 2j − 1)(m− 1)E[D2π

m−2j−2
2

2 σj ]− (m− 2j − 1)(m− 2)E[D2π
m−2j−2

2
2 σj−1]

− (m− 2j − 2)(m− 1)E[D2π
m−2j−4

2
2 σj+1] +

(m− 2j − 2)(m− 2)

4
E[D2π

m−2j−4
2

2 σj−1]

− (m2 − (2j − 1)m+ (2j + 1)(j − 1))E[Dπ
m−2j−2

2
2 zσj ] +

m(m− 2)

8
E[Dπ

m−2j−2
2

2 zσj−1]

+
(m− 2j − 2)(m− 2j)

8
E[Dπ

m−2j−4
2

2 zσj+1]

∂τE[π
m−2j

2
2 σj ] =

m(m− 2j)

4
E[Dπ

m−2j−2
2

2 zσj ]− (m2 − (2j + 1)m+ j(2j + 1))E[π
m−2j−2

2
2 σj ]

+
m(m− 2)

8
E[π

m−2j−2
2

2 σj ] +
(m− 2j − 2)(m− 2j)

8
E[π

m−2j−4
2

2 σj+1].

Each term appearing here belongs to the Dm−2 system or is found in the set of new moments enumerated
in Equation S35.

S1.5 Sampling bias and the relationship between Ψn and Hill-Robertson statis-
tics

E[D] is a two-haplotype statistic, meaning we require one phased diploid genome to estimate D genome-wide.
In practice, to estimate D we count the number of times we observe a (AB|ab) pairing, subtract the counts
of observed (Ab|aB) pairings, and normalize by the total number of two-locus pairs considered. From the
two-locus haplotype frequency spectrum, computed under the appropriate per-base mutation rate,

E[D] =
1

2
(Ψ2(1, 0, 0)−Ψ2(0, 1, 1)) .

A more accurate estimate may be obtained by considering haplotype frequencies in a larger sample size
than n = 2, although the estimate would then need to be corrected due to sampling bias. Alternatively, we
can use hypergeometric projection to directly calculate an unbiased estimate of E[D] for n > 2 samples. A
two-locus pair with sample size n and observed haplotype counts (nAB , nAb, naB , nab) contributes to E[D]
by

1

2

(
nAB

1

)(
nab

1

)(
n
2

) − 1

2

(
nAb

1

)(
naB

1

)(
n
2

) =
nABnab
n(n− 1)

− nAbnaB
n(n− 1)

. (S36)

This approach not only provides an unbiased estimate of E[D], but also allows us to compute E[D] over pairs
of sites with different sample sizes (e.g. to account for missing data).

We can express E[D2] or any other term in the Hill-Robertson system as a linear combination of entries
in Ψ4. For example,

E[D2] = E[(fABfab − fAbfaB)
2
]

= 2

(
1(
4

2,0,0,2

)Ψ4(2, 0, 0) +
1(
4

0,2,2,0

)Ψ4(0, 2, 2)− 2(
4

1,1,1,1

)Ψ4(1, 1, 1)

)

=
1

3

(
Ψ4(2, 0, 0) + Ψ4(0, 2, 2)− 1

2
Ψ4(1, 1, 1)

)
. (S37)
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The multinomial factors arise because the entries of Ψn are unsorted configuration probabilities, while E[D2]
implies a particular order of drawn haplotypes. This implies that we may obtain an unbiased estimate for
any quantity (such as E[D2]) from an arbitrary sample size n through hypergeometric projection to the
appropriate sample size. For example, in a sample of size n a two-locus pair (with observed haplotype counts
(nAB , nAb, naB , nab)) contributes to E[D2]

1

3

(
nAB

2

)(
nab

2

)(
n
4

) +
1

3

(
nAb

2

)(
naB

2

)(
n
4

) − 1

6

(
nAB

1

)(
nAb

1

)(
naB

1

)(
nab

1

)(
n
4

) . (S38)

This allows for direct comparison between observed haplotype data and expectations from the model without
having to correct for sample size bias. We discuss our approach for unphased data below in Data processing.

S1.6 Low coverage data

Low coverage sequencing data is known to miss a sizable proportion of low frequency variation, so that
singleton and doubleton bins of the AFS may be significantly underestimated (Gravel et al., 2011). This
may bias demographic inference based on the AFS from low coverage data, particularly for recent population
size or growth parameters. Low order LD statistics studied in this paper are less sensitive to low coverage
data, because low frequency variants contribute relatively little to aggregate statistics in the Hill-Robertson
system across the genome (Rogers, 2014). Rogers (2014) argued that σ2

d type statistics are insensitive to
variants with low heterozygosity, and thus insensitive to low coverage data or sequencing error.

To confirm this claim with real data, we examined the effect of low coverage on 40 individuals from the
CHB population in the 1000 Genomes data that were also sequenced at high (∼80x) coverage in (Lan et al.,
2017). By comparing statistics computed from intergenic regions in the same individuals between the two
datasets, we can see if low coverage biases our estimates. In Figure A6, we compare σ2

d = E[D2]/E[π2],
E[Dz]/E[π2], and the folded single-site AFS. We find that the low order two-locus statistics are unaffected
by low coverage data, but low frequency bins of the AFS are underestimated in the low coverage data (17.5%
fewer singletons, 7% fewer doubletons).

S1.7 Data processing

S1.7.1 Intergenic data

We used data from all intergenic regions on autosomal chromosomes, as identified using the GRCh37 build
from the Genome Reference Consortium. We chose intergenic regions to reduce possible biases in statistic
estimation due to selection (Figure A10). We considered only keeping SNPs at least a given distance from
the nearest gene, to further reduce selective effects, but that would come at the cost of more noise in the
statistic estimates, as we would be left with fewer loci from which to estimate statistics. We chose to use all
intergenic SNPs because there was little difference between statistics estimated using all intergenic loci and
using all loci at least a given distance from genes (Figure A11).

S1.7.2 Recombination map and binning pairs by recombination distance

We considered all pairs of biallelic SNPs in intergenic regions separated by recombination distances 0.00001 ≤
r < 0.002, and binned pairs of SNPs with bin edges (0.00001, 0.00002, 0.00003, 0.00005, 0.00007, 0.0001,
0.0002, 0.0003, 0.0005, 0.0007, 0.001, 0.002). Recombination distances for each pair of SNPs were computed
using the African American recombination map from Hinch et al. (2011).

S1.7.3 Computing LD statistics from unphased data and accounting for sampling bias

For a given pair of biallelic SNPs, we computed their contribution to the set of statistics in the multi-
population Hill-Robertson system (for three populations: YRI, CHB, and CEU). We determined two-locus
genotype counts within each population (nAABB , nAaBB , naaBB , nAABb, . . .), as well as allele frequencies at
the left and right loci within each population. Because we worked with genotype data instead of phased
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haplotypes, we used the estimator D̂ of Weir (1979),

D̂ =
1

2nd

(
2nAABB + nAABb + nAaBB +

1

2
nAaBb

)
− nA

2nd

nB
2nd

,

and define
ẑj,k = (1− 2p̂j)(1− 2q̂k).

We then computed the values D̂iD̂j , D̂iẑjk, and so on from genotype data.

D̂ is known to be a biased estimator due to finite sample size. To compare model predictions to data, we
treated D̂ as a statistic and computed unbiased predictions for it. In the large sample size limit, E[f(p, q,D)]
= E[f(p̂, q̂, D̂)].

To account for sample size bias for each statistic in each population (n1, n2, . . .), we adjusted expectations
to match observed biased statistics by computing expected values for each statistic under the multinomial
sampling process. For a given statistic, we converted the D̂ statistic to genotype frequency space (e.g., using
D̂ = (g1 + g2/2 + g3/2 + g5/4)− (g1 + g2 + g3 + g4/2 + g5/2 + g6/2)(g1 + g2/2 + g4 + g5/2 + g7 + g8/2), where
(g1, g2, . . . , g9) = (nAABB/nd, nAABb/nd, nAAbb/nd, nAaBB/nd, nAaBb/nd, nAabb/nd, naaBB/nd, naaBb/nd,
naabb/nd)).

Then for each term in the expansion in g-space, we computed the expected sampling probabilities through
the multinomial moment generating function (Weir, 1979). We then converted those adjusted sampling prob-
abilities to expected haplotype probabilities, and we found that we could express these sampling probabilities
in the Hill-Robertson basis. In the Hill-Robertson system, for a sample size of n diploid genomes, we have

En[D̂2]

En[D̂ẑ]
En[π̂2]

En[Ĥ]

 =


(n2−n+1)(n−1)

n3

(n−1)2
2n3

n−1
n2 0

2(n−1)2
n3

(n−1)3
n3 0 0

(2n−1)
4n3

(2n−1)2
8n3

(2n−1)2
4n2 0

0 0 0 2n−1
2n



E[D2]
E[Dz]
E[π2]
E[H]

 ,

where En denotes expected D̂ statistics corrected for sample size bias for a given n. Here, we have taken the
approach of computing predictions from the model and then adjusting those predictions through multinomial
sampling theory, giving us predictions for biased estimates from the data. We could instead invert this matrix
to compute unbiased estimates from data to compare directly to model predictions. While either approach
should be acceptable, we chose to build the bias into the model to avoid any potential instability in solving
the inverse problem.

In practice, we worked with σ2
d-type statistics of the form E[·]/E[π2(YRI)] and compared to the same

statistics computed from moments.LD. To compute E[D2] or any other statistic for a given recombination
bin, we sum all contributions of pairs of SNPs with recombination distance falling within that bin, and
then divide by the total number of pairs of sites along the genome which could have contributed to that
bin, whether they are variable or not. For σ2

d-type statistics, we don’t need to compute the total possible
number of pairs per bin, and need only sum all contributions and divide by the total sum of contributions
to E[π2(YRI)].

S1.7.4 Bootstraps for likelihood computation

We used a multivariate normal function to estimate likelihood from expected values. For a given recombina-
tion bin, we compared the observed vector of LD statistics to expectations computed under the model with
adjustments for phasing and sample size. To compute likelihoods, we needed to estimate the covariances
of statistics in this vector. To compute the covariance matrix, we divided the genome into 500 regions,
each with approximately the same length of intergenic regions. We computed statistics over each of the 500
regions, and then constructed 500 bootstrap replicate sets of statistics by sampling with replacement 500
times. We used these bootstrap replicates to estimate the covariance matrix Σ for each recombination bin.
This same set of bootstrap replicates and covariance matrix was used to estimate confidence intervals, as
proposed by Coffman et al. (2016), to account for non-independence of pairs of SNPs in the same region or
pairs with overlapping SNPs.
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S1.8 Supplementary figures and tables
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Figure A1: Hierarchy of moments. Even and odd moments separate into distinct hierarchical systems.
Arrows indicate dependence of sets of moments.
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Figure A2: Dependence of Hill-Robertson statistics on lowest minor allele frequency. (A-C) The
proportion of each statistic contributed by pairs of loci binned by the lowest MAF of the two loci. D2

has contribution mainly from common variants (95% interval 0.1-0.5), while Dz has contribution mainly
from rare to low frequency variants (95% interval 0-0.35). (D) The proportion of each statistic contributed
by pairs of alleles where both alleles have frequency above a given MAF. We computed these distributions
from 40 high coverage CHB samples from Lan et al. (2017) that overlap with the 1000 Genomes Project
Consortium et al. (2015).
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Figure A3: Within and between population heterozygosity. Toy model for out-of-Africa expansion,
with subsequent migration between split populations. The OOA population experiences a steady decay of
heterozygosity due to the prolonged bottleneck, and different bottleneck strengths and exponential growth
rates between more recent Eu and As populations account for differences in observed heterozygosity in
those populations. Drift does not directly affect cross-population heterozygosity, which increases linearly
in the absence of migration, and more slowly with low levels of migration. Strong migration would lead to
cross-population H intermediate between the two populations.
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Figure A4: Validation: computed LD curves match simulation. (A) We simulated 200 replicates
of 100Mb genome using msprime (Kelleher et al., 2016) under the illustrated four-population demography.
Demographic parameters for this simulation were νA = 1.5, TA = 0.3, νB = 0.25, TB = 0.16, ν2,0 = 0.1,
ν2f = 4.0, ν3,0 = 0.2, ν3,f = 2.0, T3 = 0.06, ν4 = 0.5, T4 = 0.01, and f = 0.5, where νi is the relative size of
population i compared to the reference ancestral size, Ne = 104. u = 2 × 10−8 and r = 2 × 10−8 per base
pair. (B-E) Shaded regions indicate 95% confidence intervals of statistics from the 200 simulations, while
solid curves are expectations from moments.LD.
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Figure A5: Hill-Robertson statistics are approximately normally distributed. Here, we used
msprime (Kelleher et al., 2016) to simulate 100 replicates of a two-epoch demography with recent growth,
and computed σ2

d and E[Dz]/E[π2] for multiple recombination distance bins.
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Figure A6: Effect of mutation types and low coverage on Hill-Robertson statistics. We used 40
individuals that overlapped between the 1000 Genomes data and the 90 Han Chinese data to compute (A,C)
σ2
d, (B,D) E[Dz]/E[π2] and (E) the folded AFS across intergenic sites. (A-B) In our analyses in the main text,

we used all mutations (transitions and transversions). Here, we compare LD curves for statistics estimated
from transitions (solid, blue) or transversions (dashed, orange) only. Differences in statistics between the
two mutation types are negligible. (C-D) The 90 Han Chinese data was high coverage, while 1000 Genomes
data (which we used in our analysis) was low coverage. The LD curves are largely unaffected by the level of
low coverage in the 1000 Genomes data. (E-F) For comparison, the allele frequency spectrum is sensitive to
coverage, as the singleton bin of the AFS is significantly underestimated in the 1000 Genomes data (F).
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Figure A7: Additional statistics from model fits. Figures 3 and 4 compare model predictions to a
handful of observed statistics in the multi-population basis. Here, we show comparisons for the remainder of
the statistics used in the fits, and each two-locus statistic is normalized by π2(1, 1, 1, 1) = π2(YRI). Single-
locus statistics are normalized by H(YRI). The horizontal axis is given in units of cM. Indices in the titles
indicate populations: YRI is population 1, CHB is population 2, and CEU is population 3. Red curves:
standard OOA model. Green curves: OOA model with archaic branches. Error bars on the data indicate
95% confidence intervals of estimates. Best fit parameters and 95% confidence intervals for each are given
in Table A2.
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Figure A8: Residuals from the OOA and archaic models. Residuals are shown for the best fit OOA
model (top, illustrated in Figure 3) and the best fit model with archaic admixture (bottom, from Figure 4).

Residuals were computed as (Di −Ei)/V 1/2
i , where Di is the observed data for a given statistic and bin, Ei

is the expected statistic from the best fit model, and Vi is the variance of the statistics computed through
bootstrap resampling.
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Figure A9: Alternate topology of archaic branches. (A) In addition to the scenario where each archaic
branch splits independently from the modern human branch (Figure 4), we considered a model where a single
archaic lineage splits from modern humans, and then some time later splits into the Eurasian and African
archaic branches. Aside from the archaic split times and topology, parameterization was the same between
the two models. (B-E) This archaic admixture model provided a good fit the LD data, roughly equal to the
archaic admixture model shown in the main text.
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Figure A10: LD statistics from genome regions. We compared intergenic data, which we used in our
analyses, to LD decay curves from intron and exon regions. Each statistic is normalized by π2(Y RI). Exon
regions have LD decay curves that differ significantly from intron and intergenic regions, and intron and
intergenic regions also differ. Selection is known to affect the expected AFS and LD, so we excluded genic
regions from our analyses.
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Figure A11: LD statistics from intergenic regions. We compared statistics for SNPs across all intergenic
regions to SNPs from intergenic regions at least a given distance from the nearest gene. Overall, statistics
were similar for each choice. We chose to include all intergenic SNPs in order to increase the number of
observed pairs in our data.
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Relative error(×10−3) Comp. time (minutes)
Model ∂a∂i moments ∂a∂i moments
Equilibrium, n = 30, ρ = 0 1.8 0.0017 0.25 < 10−3

Equilibrium, n = 30, ρ = 10 15.6 0.40 0.25 < 10−3

Equilibrium, n = 50, ρ = 0 4.6 0.0033 3.5 < 10−3

Equilibrium, n = 50, ρ = 10 34 0.11 3.5 < 10−3

Bottleneck, n = 30, ρ = 0 0.41 0.031 7.8 0.037
Bottleneck, n = 30, ρ = 10 38.32 0.25 7.9 0.054
Bottleneck, n = 50, ρ = 0 3.97 0.036 21.8 0.60
Bottleneck, n = 50, ρ = 10 63.53 0.058 22.3 0.94

Table A1: Comparison of moments.TwoLocus and ∂a∂i.TwoLocus. For the equilibrium distribution,
we compared to Hudson’s 2001 implementation for n = 100 projected down to sample sizes n = 30 and
n = 50. For the bottleneck distribution, we computed a numerical approximation with a larger sample
size (n = 80) and shorter integration time step using moments and then projected to the required size. We
measured relative error as

∑
(Ψn(model)−Ψn(True))2/Ψn(True). Equilibrium solutions were cached, as is

default in both programs, but ∂a∂i still needs to integrate ψ against the multinomial distribution to obtain
Ψn, accounting for the time differences in the Equilibrium case. With recombination, moments improves in
accuracy as n increases, since the Jackknife approximation becomes more and more accurate with larger n.

Model Archaic Admixture B
Parameter ML Estimates 95% CI
N0 3700 3020− 4370
NYRI 14000 11800− 16100
NB 860 110− 1610
NCEU0 2300 1430− 3210
rCEU(%) 0.122 0.081− 0.149
NCHB0 650 340− 960
rCHB(%) 0.362 0− 0.435
mAF - B(×10−5) 53.4 11.8− 95.0
mYRI - CEU(×10−5) 2.43 1.62− 3.24
mYRI - CHB(×10−5) 0 —
mCEU - CHB(×10−5) 11.6 7.27− 15.9
TAF (kya) 296 244− 347
TOOA (kya) 57.7 35.4− 80.0
TCEU - CHB (kya) 36.3 28.8− 43.8
TArch. split (kya) 487 167− 807
TArch. Af. - Nean. split (kya) 374 25.5− 723
TArch. Af. mig. (kya) 110 0− 476
mAF - Arch. Af.(×10−5) ... 2.43 0− 5.24
mOOA - Nean(×10−5) 1.51 0− 3.19
TArch. adm. end (kya) 20.7 16.3− 25.1

Table A2: Maximum likelihood parameters for alternate archaic topology. For the most part,
estimates were qualitatively similar to the archaic model presented in the main text. In each model, the
split between modern humans and the branch leading to the archaic African population occurred about 500
kya. However, here the Neanderthal lineage split from this branch more recently than 500 kya, which is
considerably more recent than most estimates or our estimate from the alternative model. This is expected,
as the largest discrepancy between the non-archaic model and data occurred for Dz in African populations,
so the inference of the split date in this model is primarily driven by the signal in YRI. Without including
archaic genomes in this analysis, we did not have statistical power to discriminate between the two proposed
topologies.
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Model OOA (fit w/o Dz) Archaic Admixture
Parameter Estimates 95% CI Estimates 95% CI
N0 2360 2140− 2580 2860 2460− 3260
NLWK 14600 11500− 17700 15300 10400− 20300
NB 1130 700− 1570 1020 730− 1310
NGBR0 1560 760− 2370 2210 1500− 2920
rGBR(%) 0.229 0.011− 0.293 0.157 0.135− 0.175
NKHV0 390 0− 980 630 480− 790
rKHV(%) 0.680 0− 0.888 0.471 0− 0.545
mAF - B(×10−5) 48.9 29.2− 68.6 50.7 41.2− 60.2
mLWK - GBR(×10−5) 2.71 0− 8.92 2.87 1.45− 4.29
mLWK - KHV(×10−5) 0 0− 1.32 0 —
mGBR - KHV(×10−5) 9.94 4.41− 15.5 7.29 0− 16.8
TAF (kya) 215 139− 290 249 219− 279
TOOA (kya) 68.2 52.6− 83.7 61.5 44.0− 79.0
TGBR - KHV (kya) 28.3 21.9− 34.8 30.9 26.2− 35.5
TArch. Af. split (kya) — 511 456− 566
TArch. Af. mig. (kya) — 250 160− 341
mAF - Arch. Af.(×10−5) — 0.752 0.288− 1.22
TNean. (kya) — 540 381− 700
mOOA - Nean(×10−5) — 0.414 0− 0.993
TArch. end (kya) — 13.0 4.3− 21.7

Table A3: Models fits to alternate trio. We fit the same out-of-Africa model with and without archaic
branches to a separate trio in the 1000 Genomes data: (Luhya from Kenya (LWK), Kinh from Vietnam
(KHV), and British from England and Scotland (GBR)). Best fit parameters compare qualitatively to those
fit to the YRI-CHB-CEU data, although confidence intervals were wider for this trio.
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